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Abstract. A technique of ab initio fully relativistic pseudopotential construction has been 
developed and used to construct pseudopotentials (PP) for all transition metals. Systematic 
trends in the Periodic table have been studied. It was shown that the correct evaluation of 
relativistic effects in the Dirac approximation could be of greater importance for transition 
metals than for simple metals due to specific features of the valence electron density distri- 
bution. Test calculations for a variety of atoms and atomic configurations indicated good 
transferability of our PPS. The influence of ionicradii and of the particular choice of exchange- 
correlation potential on the PP obtained was studied. LDA relativistic results were found to 
be qualitatively accurate in atomic spectra studies. 

1. Introduction 

Intensive development of ab initio pseudopotential (PP) calculations during the last 
decade [l-31 have shown the necessity of using an ionic non-local PP. This approach has 
enabled solid state physicists, using band structure studies, to make ab initio predictions 
of such properties as lattice dynamics [l, 21 and the electron-phonon interaction both 
at ambient conditions [3] and under substantial pressure [4]. Techniques have been 
developed for ab initio determinations of structural phase transition temperatures [ 5 ] ,  
and phonon-phonon coupling has been studied to provide an explanation of high- 
temperature phase stability [6]. A b  initio density-functional calculations with the use of 
PPS have been performed not only for elemental solids but also for compounds and alloys 
of metals [7]  and of semiconductors [8] where the heat of formation and other lattice 
properties have been studied. 

One of the main requirements which an ab initio PP designed for solid state studies 
must meet is the correct description of ionic core scattering properties. It is just this 
feature which enables transferability of the PP, i.e. the potential obtained describes 
exactly the electron scattering process for different atomic environments. In this intro- 
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ductory section different methods of ab initio PP construction will be reviewed briefly, 
and in the following sections a fully relativistic technique will be suggested. 

An ab initio PP is usually calculated using density-functional theory (DFT) for free 
atoms or ions [9-121. The idea of the introduction of an effective PP instead of the full 
potential for the nucleus has already been used successfully in atomic and molecular 
physics. A comprehensive review of non-relativistic atomic calculations was given in 
[13], where the method of taking into account relativistic effects in the Dirac-Hartree- 
Fock approach was also proposed. 

We wish only to comment here on the term ‘norm-conserving PP’ since details of the 
non-relativistic procedure have been given elsewhere [9-121. Usually a non-relativistic 
DFT PP V,(r) is obtained from an inversion of the Schrodinger equation for a certain 
pseudo wavefunction q p l ( r ) ,  initially chosen as a linear combination of true wavefunctions 
I)/ giving rise to a singular PP [9]. In this case rpl and ql can be made identical outside the 
core only if the norm of the pseudo wavefunction is not kept, leading to the orthogonality 
hole problem. A norm-conserving PP enables this problem to be avoided by exactly 
equating the normalised q and T) outside the core. Different methods have been 
suggested for this purpose resulting in non-singular [ 10,111 as well as in singular PPS [12] 
with the same behaviour at r + 0 as the PP from [9]. Singular PPS are suitable for structural 
mapping of binary compounds [14-161 with little use elsewhere, so we shall only treat 
non-singular PPS here. 

All potentials mentioned above have been used with sufficient success when com- 
puting crystal properties in the framework of the local density approximation (LDA) (see 
e.g. [17]). Surprisingly, a LDA PP appeared even to give the same electron spectrum as 
the full atomic potential in an unrestricted HF calculation [18]. 

The idea of a relativistic PP approach suitable for heavy elements was first introduced 
in atomic Dirac-Hartree-Fock calculations [ 13, 191. The relativistic LDA version of the 
PP approach was suggested by Kleinman [20] and realised numerically two years later in 
a classic work by Bachelet et a1 [21]. Relativistic coupled equations for the valence 
electrons were transformed into the non-relativistic Schrodinger equation; thus all 
relativistic effects were contained in a non-relativistic PP similarly to the results of [13]. 
Another approach chosen in [ 191 led to a fully relativistic spin-polarised approach with 
the PP represented by a 4 X 4 matrix which seems to be inappropriate for LDA solid state 
calculations. 

A modified scalar relativistic treatment proposed in [20,21] and widely exploited 
later was based initially on Dirac’s coupled pair equations for major and minor wavefunc- 
tion components g ( r )  andf(r) 

G’ + KG/r  = (2c f2  + E - V ( r ) ) a F  

F‘ - KF/r = (V - &)mG 

where G(r)  = r g ( r ) ,  F(r )  = r f ( r )  and K = ( I  - j)(2j + 1) is a relativistic quantum 
number. Atomic units with h = m = e = 1 and a = c-l = 137.037-’ are used here and 
throughout the paper unless otherwise stated. Neglecting the ( E  - V )  term in the first 
equation of (1.1) one may easily obtain a Schrodinger-type equation for the major 
component only, which is then inverted as in the non-relativistic case [lo]?. 

t Usually the PP obtained in this approach is further used in the fully non-relativistic (or scalar relativistic) 
band structure calculation. The recent article by Elsasser et a1 [42] serves as an example of such an approach, 
where the authors claimed to study relativistic effects but even the huge spin-orbit splitting for 5d metals was 
not taken into account. 
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At  this point several questions inevitably arise. First of all, this approach is not well 
grounded for the core region, r < r,, where the d component of the PP is quite substantial, 
reaching e.g. hundreds of Rydbergs for 3d elements (see [22] or the present results, 
section 4). The correctness of the spin-orbit splitting treatment in terms of weighted 
sums and differences of the PP, corresponding to different values of the total angular- 
momentum quantum number, j ,  and to the same value of the angular quantum number, 
I, is also doubtful. 

Taking this into account we aimed to develop a method of band structure and 
total energy calculations in Dirac’s formalism. The first step described in this paper is 
concerned with the calculation of a relativistic ab initio PP. This procedure is presented 
in section 2 while the results of atomic test calculations for all transition metals are given 
in section 3. Section 4 is concerned with trends in PP characteristics observed in the 
Periodic table. 

2. Construction of the relativistic PP 

We recall that, by correctly taking into account relativistic effects, one may expect to 
gain accuracy mainly in the study of heavy transition metals where the PP in the core 
region is not small [22] and the wavefunction for d states is highly localised near the 
nucleus. 

The procedure suggested here includes several steps: 

(i) As in [21] we solve Dirac’s equation (1.1) for a chosen atomic reference con- 
figuration, thus obtaining valence energies E,, radial wave-functions F, and G,, and a 
total self-consistent atomic potential Vat. The atomic problem was considered within the 
LDA, V,, was chosen to be in the Ceperley-Alder form [23] as parametrised by Perdew 
and Zunger [24]. Other LDA expressions [25,26] for V,, were also used for comparison. 
Following [21] we account for relativistic effects (transverse photon-electron inter- 
action, retardation of the Coulomb electron interaction) in the form proposed by 
Macdonald and Vosko [27]. This leads to multiplication of the exchange energy E ,  and 
potential V,  by additional factorsf, and f,, respectively 

where /3 = 0.0140/r, = uF(p) /c  is the parameter which measures the Fermi velocity, and 
r,  = (3/4~cp)*/~.  Relativistic corrections are important in regions with large /3, i.e. a high 
density, p. Here the usual LDA definitions for V,.(p(r)) and for p( r )  in terms of G(r) and 
F ( r )  were used [17]. (Note that equations forf, andf,, namely (3.4) from [27] and (2.8) 
from [21], contain misprints.) 

Reference atomic configurations for the transition element series were chosen 
according to 1211. PPS acting on s and d states were determined using free atom con- 
figurations, while p and f components were obtained from single- and double-ionised 
configurations, respectively. Both spin-orbit components were always occupied accord- 
ing to their multiplicities (2j + 1) giving the reference configuration 
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for the p potential, where Z, is the number of valence electrons, and for the f potential 
we obtain correspondingly the reference configuration 

ns@(n- l)d@(Zv-3)(n- l)d:P,(Z\-3)(n- l)f@(n- l)f#:. 

(ii) We construct an intermediate PP Vlf) regular in the r + 0 limit by cutting off the 
short-range part of the atomic potential, Val 

Vlf' = Vat(1 - f c < ~ / r c K ) )  + CKfc(r/rcK)* (2.2) 

Acut-offfunctionf,(x) = exp( -xi.) withA = 3.5 waschosen asin [21], while theconstant 
C, was adjusted so that equations (1.1) with the Vk') potential had the eigenvalue equal 
to the atomic one E, ,  and the corresponding radial function GL1)(r) was nodeless. We 
have Vlf) + Vat beyond the core region, so for r > r,, 

yKGi')(r)+ Git(r) y , ~ l f ) ( r ) +  ~ ; ~ ( r )  r +  x (2.3) 
since intermediate and atomic wavefunctions satisfy the same differential equation and 
boundary conditions for r > r,,. Cut-off radii were obtained as rCK = r r a x / K I ,  where 
rrax  was the position of the outermost peak in Cit(r). Values of the KI parameters were 
slightly increased compared with [21] being equal to 1.9, 1.7 and 3.0 for 3d elements, 
1.9, 1.7 and 1.7 for 4d elements, and 1.7, 1.7, 1.6 and 3.0 for 5d elements, where thef 
component of the PP was also calculated. This decrease of r,, leads to more compact PPS 
which may be preferable in real-space band structure calculations [28,29]. Potential 
matrix elements would be essentially simplified in the approach mentioned if the non- 
local part of the PP (i.e. V ;  + Z,/r) centred on different atoms did not overlap [29]. 

(iii) We modify the PP in the core region in order to obtain pseudo wavefunctions 
Cis, Fp," coinciding with atomic ones for r > rcK. In this way the norm-conserving 
condition is satisfied, resulting in a good PP transferability. At this step we transform the 
major component GL') in the following way 

Gp,"(r) = y,(G!$(r) + 6,r[+' fc(r /r , , ) ) .  (2.4) 

In ther+  xlimitweobtain Cp + y,GL1)+ G;t inviewof(2.3),whileinther+ Olimit 
the asymptotic behaviour G,(r) - r i t l  is retained. Using the modified major component 
(2.4) we obtain the minor one, F;', by a numerical integration of the following equation 

d F p / d r  = K F & F / ~  + ( G ~ / F , ~ S ) { ~ L Y - ~ ( F K ~ ~  - yKFk1)) + yK(&, + V.$'))aFL1) 

- y K 6 K r ' f C ( ' / ' C K )  1' + + - A(r/rCK>hl> (2.5) 

where the particular shape offc(x) has already been taken into account. The value of 
entering (2.4) and (2.5) is determined from the normalisation condition: 

j [(Gp(r))* + (e(~))~]  d r  = 1. (2.6) 

Usually the correction introduced at this step is small since iy', - 11 is of the order of 
for all other states. Assuming y K  = 1 we see that the solution 

of (2.4)-(2.6) is simply Fp," = Fill ,  G r  = Glf), and 6, = 0. 
(iv) The screened ionic PP VP)(r) is found by inverting the second equation of (1.1) 

taking into account (2.6): 

for s states and of 

VL*)(Y) = (2a-2 - &,)(1- yKFp/F,PS)  + V p y , F y F p  

- Y K 6 , Y ' f ( Y / Y c K ) [ l  + 1 + K - A(r/r, ,) ']/Fy. (2.7) 
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From (2.7) it may be seen that outside the core region Vpj + Vi1) + V"(Y). If one 
neglects corrections made at the third step one would obtain simply Vi2) = Vi1) in view 

(v) Finally, we obtain an unscreened ionic PP VL following (2.8) where the pseudo 
of y K  = 1. 

density pps constructed according to (2.9) is used 

pps(r) = QK[(GF(r)) + (FF(r))*I* (2.9) 
K 

A non-linear potential [30,31] may be constructed in this approach by using Vx,(p, + pps) 
instead of Vxc(pps) in (2.8), where pc is the electron density of core states. Application 
of non-linear PPS in band structure calculations was discussed in detail in [32] where a 
term Vxc(pc) was also added to (2.8) revealing the logical connection with the problem 
of exchange-correlation non-linearity. Note that the non-linear PP for tungsten com- 
puted in [32] converges to -Z , / r  asymptotically only for Y > 5 while the usual approach 
provides convergence at least for r > 3. 

Subsequent modifications [33,34] of the conventional procedure [21] may also be 
useful in the fully relativistic approach. These innovations were concerned with the 
cutoff functionf,(x). In [33] it was shown that by choosing different rcKin equations (2.2) 
and (2.4) one may obtain PPS with bound states corresponding to valence electrons and 
to outer-core ones as well. Such PPS appear to be more short-ranged than usual ones, 
and may be useful in real-space calculations [28,29] for e.g. 5d metals, where 5p outer- 
core states may be treated as valence states. A similar modification of the cutoff function 
was applied in [34] which was aimed to obtain the PP rapidly decreasing in reciprocal 
space and applicable in momentum-space calculations [35]. In the present work the 
modifications mentioned above were not applied. 

3. Transferability of PPS 

A relativistic norm-conserving PP for tungsten is given in figure 1 as a representative 
example, and the corresponding valence wavefunctions are shown in figure 2. The 
latter figure clearly shows the reason for success of the usual transformation of Dirac's 
equations (1.1) to the Schrodinger-type one [20,21]. 

This transformation is based on the fact that the minor component Fit is significant 
only at r < r,, where relativistic effects are important. Whilst constructing ionic PPS one 
replaces Fit with a smooth function K(Y) which is substantially smaller than Fit at 
r < rCK. Since the pseudo wavefunction coincides with the true atomic one outside the 
core region we have Fp," Gjl" for r > rCK, so the transition from an atomic problem to 
a pseudoatomic one does diminish the relative contribution of the minor component to 
the electron density. 

Figure 2 illustrates the influence of the presence of a highly space-localised d electron 
valence shell on the accuracy of the common procedure connected with neglecting the 
minor wavefunction component. Due to the significant difference between the r,,-values 
for the s, p and d states we obtain a considerable contribution from F r  to the pseudo- 
atomic density in the intermediate region, rCd < r < rcs. An analysis of figures 1 and 2 
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b 
0 . 5 1  - 

3 

Figure 1.  Norm-conserving relativistic 
PP for tungsten A ,  s, >, B, p,  2 ,  C, p? 2 ,  

D, d 3 ? ,  E. d 5 ? .  F, f 5 ? ,  G ,  f , ?  The 
asymptotic -Z,/r is shown by the broken 
curve 

Figure 2. Valence wavefunctions for tung- 
sten. Only j = i + 1/2 components are 
shown. Atomic functions G:; Fit are 
marked as 1, pseudo wavefunction Cy, fr are marked as 2. Vertical bars cor- 
respond to cutoff radii rex. 
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shows that in this region the PP magnitude varies from 10 to 100 au for different elements, 
and so it is not negligible in comparison with a-* in (1.1). 

Let us consider now the problem of PP transferability which may be reformulated 
[10-12] in terms of a PP energy dependence. Results of atomic test calculations for 
tungsten are presented in table 1, and the same accuracy was obtained for 3d and 4d 
elements. The overall accuracy in the one-electron energies with respect to the all- 
electron calculation is better than 0.2% for occupied states irrespective of excitation 
energy E,, for the configuration considered. Unoccupied states which were not included 
in the self-consistency procedure are described with slightly less accuracy, an error 
amounting in some cases to 1%. Note that the pseudoatomic self-consistent calculation 
is an order of magnitude faster than a similar all-electron study. The accuracy of the E,, 
computation appeared to be even better than that of E ,  being equal to nearly 0.1 %. 

Thus we have shown that the pseudoatomic calculation of the valence atomic states 
reproduces the LDA all-electron results accurately but with a substantially smaller com- 
putational effort. Therefore, we tried to study the applicability of the relativistic LDA to 
the electronic structure calculation of the transition series atoms using our PP generated 
with the above set of K,  values and with V,, from [23,24]. Excitation energies E,, are 
given in table 2 for a number of configurations of free atoms and ions. Our data are 
compared with the experimental values and with the results of non-relativistic Hartree- 
Fock (HF) calculations [37]. Energies, quoted from [37] and obtained by the Cowan- 
Griffin (CG) method [38] (which approximately takes into account relativistic effects in 
the framework of the HF formalism), are also given in this table. 

Table 1. Results of test atomic calculations for tungsten. E, represents one-electron energies, 
E,, is the excitation energy for the configuration considered. All-electron data are given in 
the upper row while deviations of pseudoatomic values are given in the lower row. The V,, 
from [36] was used. All energies are in eV.  

4.835 
0.010 

4.384 
-0.002 

5.284 
0.001 

11.306 
0.014 

10.540 
-0.006 

12.050 
0,004 

15.045 
0.008 

18.419 
0.009 

1.037 
0.012 

0.852 
-0.003 

1.510 
-0.001 

6.644 
0.014 

6.129 
-0.012 

7.262 
0.015 

9.766 
0.017 

12.992 
0.018 

0.627 
0.004 

0.509 
-0.01 1 

1.093 
-0.010 

5.889 
0.007 

5.450 
-0.027 

6.468 
0.010 

8.782 
0.012 

11.925 
0.011 

3.727 
0.006 

2.691 
0.002 

3.857 
0.001 

10.914 
0.014 

9.452 
0.014 

11.955 
-0.009 

15.593 
0.019 

19.043 
0.022 

3.025 
0.006 

2.052 
0.000 

3.192 
0.000 

10.162 
0.015 

8.759 
0.011 

11.182 
-0.006 

14.785 
0.022 

18.232 
0.025 

0.915 
0.000 

0.911 
0.000 

0.995 
0.001 

2.043 
0.000 

3.966 
0.002 

0.915 
0.000 

0.911 
0.000 

0.995 
0.001 

2.042 
0.000 

3.964 
0.002 

0.000 
0.000 

1.902 
0.008 

5.747 
0.014 

8.972 
0.014 

10.202 
0.008 

12.656 
0.014 

19.548 
0.027 

24.794 
0.029 
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Table 2. Excitation energies for atoms of transition elements. NHF: non-relativistic Hartree- 
Fock results [37]; HFR: results from [37] obtained by the Cowan-Griffin method [38]; PP: 
present results; EXP: experimental data from [37,39]. 

NHF HFR PP EXP NHF HFR PP EXP 

s2d Sc 
sd2 
d3 
sd Sc+ 
d2  

s2d2 Ti 
sd3 
d4 
sd2 Ti+ 
d3 

s2d3 V 
sd' 
d5 
sd3 V' 
d4 

s2d4 Cr 
sd5 
d6 
sd' Cr+ 
d5 

s2d5 Mn 
sd6 
d7 
sd5 Mn' 
d6 

s2d6 Fe 
sd' 
dR 
sd6 Fe' 
d7 

s2d7 CO 
sd8 
d9 
sd7 CO' 
dR 

s2dR Ni 
sd9 
d" 
sdR Ni' 
d9 

s2d9 Cu 
sd'" 
sd9 Cu+ 

0.00 0.00 0.00 0.00 
1.00 1.12 1.57 1.43 
4.47 4.65 4.03 4.19 
5.20 5.22 7.04 6.56 
6.14 6.32 7.64 7.16 

0.00 0.00 0.00 0.00 
0.54 0.68 1.06 0.81 
4.26 4.48 3.35 3.35 
5.51 5.55 7.51 6.84 
5.96 6.17 7.59 6.94 

0.00 0.00 0.00 0.00 
0.12 0.29 0.53 0.25 
3.27 3.55 2.63 2.47 
5.66 5.69 7.90 7.06 
5.81 6.06 7.40 6.73 

0.00 0.00 0.00 0.00 
-1.27 -1.06 0.15 -1.00 

5.76 6.07 2.04 3.40 
5.79 5.83 8.27 7.28 
4.64 4.94 7.35 5.76 

0.00 0.00 0.00 0.00 
3.33 3.53 -0.31 2.14 
9.15 9.49 2.34 5.59 
5.90 5.95 8.62 7.43 
6.12 7.05 6.62 7.80 

0.00 0.00 0.00 0.00 
1.80 2.06 -0.74 0.87 
7.46 7.87 0.71 4.07 
6.28 6.34 8.95 7.90 
7.95 8.33 7.00 8.15 

0.00 0.00 0.00 0.00 
1.53 1.83 -1.13 0.42 
7.04 7.53 0.11 3.36 
6.64 6.72 9.27 8.28 
7.77 8.22 6.87 7.85 

0.00 0.00 0.00 0.00 
1.27 1.63 -1.51 -0.03 
5.47 6.04 -0.46 1.71 
6.98 7.09 9.48 8.67 
7.61 8.12 6.74 7.59 

0.00 0.00 0.00 0.00 
-0.37 0.06 -1.83 -1.49 

7.32 7.45 9.88 9.04 
d'' 6.04 6.62 6.67 6.23 

Y 

Y+ 

Zr 

Zr + 

Nb 

Nb+ 

MO 

MO' 

Tc 

Tc+ 

Ru 

Ru- 

Rh 

Rh' 

Pd 

Pd' 

Ag 

Ag+ 

0.00 
0.42 
2.73 
4.72 
5.48 

0.00 
-0.40 

1.71 
5.05 
4.99 

0.00 
-1.24 
-0.07 

5.15 
4.42 

0.00 
-2.89 

1.03 
5.23 
2.98 

0.00 
0.20 
2.63 
5.29 
6.12 

0.00 
-1.42 

0.27 
5.68 
4.50 

0.00 
-2.19 
-1.24 

6.03 
3.73 

0.00 
-3.01 
-3.76 

6.36 
2.91 

0.00 
-4.91 

6.66 

0.00 
0.75 
3.32 
4.81 
6.02 

0.00 
-0.01 

2.44 
5.18 
5.65 

0.00 
-0.80 

0.81 
5.29 
5.19 

0.00 
-2.37 

1.99 
5.37 
3.86 

0.00 
0.75 
3.69 
5.43 
7.05 

0.00 
-0.74 

1.50 
5.87 
5.57 

0.00 
-1.40 

0.14 
6.28 
4.93 

0.00 
-2.09 
-2.19 

6.66 
4.25 

0.00 
-3.86 

7.02 

0.00 0.00 
1.67 1.36 
3.71 3.63 
6.77 6.64 
7.70 7.53 

0.00 0.00 
1.10 0.59 
2.83 2.66 
7.29 6.95 
7.62 7.27 

0.00 0.00 
0.47 -0.18 
1.91 1.14 
7.71 6.93 
7.34 6.60 

0.00 0.00 
-0.04 -1.47 

0.94 1.71 
8.06 7.22 
7.11 5.63 

0.00 0.00 
-0.77 0.41 
-0.31 - 

8.36 7.28 
6.62 7.80 

0.00 0.00 
-1.46 -0.87 
-1.53 0.22 

8.65 7.59 
6.14 6.50 

0.00 0.00 
-2.22 -1.63 
-2.85 -1.29 

8.90 7.98 
5.56 5.85 

0.00 0.00 
-2.97 -2.43 
-4.18 -3.38 

9.14 8.32 
4.98 5.13 

0.00 0.00 
-3.71 -3.97 

9.37 8.64 
1.00 2.47 4.40 3.60 
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NHF HFR PP EXP NHF HFR PP EXP 

s2d Lu 
sd2 
d3 
sd Lu' 
dZ 

s2d2 Hf 
sd' 
dJ 
sd2 Hf- 
d3 

s2d3 Ta 
sd4 
d5 
sd3 Ta+ 
d4 

s2d4 W 
sd5 
d6 
sd4 W+ 
d5 

s2d9 Au 
sd'" 
sd9 Au+ 
d" 

- 
- 
- 
- 
- 

0.00 
-0.38 

1.72 
5.07 
5.12 

0.00 
-1.28 
-0.18 

5.13 
4.51 

0.00 
-2.95 

0.73 
5.17 
3.06 

0.00 
-5.13 

6.56 
0.78 

- 
- 
- 
- 
- 
0.00 
0.95 
4.37 
5.61 
7.54 

0.00 
0.21 
2.94 
5.71 
7.28 

0.00 
-1.29 

4.16 
5.77 
6.20 

0.00 
-1.86 

8,03 
5.79 

0.00 
2.76 
5.68 
7.49 
9.67 

0.00 
1.33 
4.96 
8.08 
9.80 

0.00 
1.82 
4.57 
7.56 
9.71 

0.00 
1.90 
4.29 
8.97 

10.20 

0.00 
-1.08 
10.68 
8.65 

0.00 
2.37 

7.16 
9.27 

0.00 
1.69 

7.17 
9.12 

0.00 
1.04 
1.02 
7.90 
9.37 

0.00 
-0.18 

- 

- 

- 
7.94 
8.35 

0.00 
-1.74 

9.76 
7.48 

s2d5 Re 0.00 
sd6 -0.04 
d' 2.05 
sd5 Re+ 5.19 
d6 5.98 

s2d6 Os 0.00 
sd7 - 1.63 
dR -0.40 
sd6 Os- 5.58 
d7 4.37 

sZd7 Ir 0.00 
sdR -2.43 
d9 -2.08 
sd7 Ir+ 5.94 
dR 3.55 

sZdR Pt 0.00 
sd9 -3.28 
d" -4.69 
sdR Pt+ 6.26 
d9 2.68 

0.00 0.00 
1.76 1.37 
5.80 3.36 
5.79 9.38 
9.35 10.02 

0.00 0.00 
0.55 0.79 
3.85 2.30 
6.40 9.75 
8.17 9.75 

0.00 0.00 
0.09 0.20 
2.63 1.23 
6.97 10.09 
7.74 9.44 

0.00 0.00 
-0.40 -0.43 

0.50 0.05 
7.51 10.39 
7.26 9.05 

0.00 
1.76 

7.88 
- 

- 

0.00 
0.75 

8.77 
- 

- 

0.00 
0.40 
2.90 
9.05 
- 

0.00 
-0.64 
-0.16 

9.22 
8.46 

An overall better agreement with experiment for our PP calculation than for HF or 
CG results can be seen from table 2. Calculated values of three ionisation potentials (IP) 
given in figure 3 also agree with experiment [39]. Analysis of table 2 and of figure 3(a) 
shows that the accuracy of the spectra of 3d atoms is worse than for heavier elements of 
the 4d and 5d rows. For example, the spin-unpolarised version of the LDA used here was 
not able to reproduce the relatively deep gaps in the IP versus 2, curves. The electron 
correlation contribution seems to be overestimated in the LDA since we have usually 
obtained the 'd electron rich' configuration as being more stable than the 's electron rich' 
one for 3d elements, contrary to experimental data. This error is of smaller importance 
for 5d elements, where relativistic effects become rather too large to stabilise the ' s  
electron rich' configurations in accordance with experiment (see table 2). In fact the IP 
versus 2, curves for 5d elements are in better qualitative and quantitative agreement 
with experiment (see figure 3(c) ) ,  and all stable configurations for 5d atoms and ions are 
predicted correctly. 

Quite recently IPS for 4d and 5d transition metals were recalculated [40] using the 
self-interaction-corrected LSD scheme in a quasirelativistic CG [38] approach. In most 
cases these results were in better agreement with experiment than either previous CG 
[37] or our own RLDA data, the maximum error reaching0.5 eV. Nevertheless the overall 
improvement in the IP versus 2, curves in comparison with our results (figure 3) was 
only of the order of 0 . 2 4 . 4  eV, and sometimes our data were in even better agreement 
with experiment. Thus we may conclude that, for 5d elements, spin-polarisation and 
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Figure 3. Three first-ionisation potentials for transition elements. Experimental data given 
by open circles and vertical bars are taken from [39]: (a) 3d elements from Sc to Cu; ( b )  4d 
elements from Y to Ag; and (c) 5d elements from Lu to Au. 

self-interaction effects are of minor importance compared with relativistic effects. As a 
whole the LDA provides good accuracy for atomic spectra, while for light 3d elements 
with unscreened d electrons spin-polarisation effects are probably more important than 
relativistic corrections. 

4. Systematic trends in PPS for transition metals 

In this section we intend to study some trends definitely manifested in the changes of 
PP characteristics along the rows of transition elements atoms. Some of them simply 
represent consequences of general trends observed in the Periodic table while others 
reflect merely the peculiarities of the PP treatment. 

Among more general features we can note the obvious contraction of the valence 
shell resulting from its filling. This effect may be seen from figure 4 as the r,,-values 
represent scaled radii of the outermost peaks of the corresponding atomic valence 
wavefunction. This contraction is revealed also in a monotonic decrease of rmi, cor- 
responding to the position of V$(r )  minimum. Note that rmin depends strongly on the 
number of d electrons in the 3d row, while for 5d elements it remains nearly unchanged 
due to the screening by inner d electrons. 

The dependence of r,, versus Z,  is not quite monotonic. A similar feature would be 
seen even better in the E ,  versus 2, curves where E ,  represents the valence energies in 
reference atomic configurations. These ‘serrated’ dependencies, arising from irregular 
alternations of ground state configurations in the Periodic table, do not result in a similar 
dependence of PP parameters. For example, the 2, dependence of the PP depth Vmin is 
very smooth for all K-components, an example for the d component is shown in figure 
5. We would also notice some unusual features inherent in the PP obtained. 

The PP acting on d electrons in 3d elements is very large and short-ranged, being 
weaker than the Coulomb potential only in the immediate vicinity of the nucleus. 
Its maximum depth is nearly five times larger than for 4d or 5d elements, and the 
corresponding radius rmi, is nearly four times smaller. The very fast increase of Vmin with 
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Figurel. Cutoff radii r,,for 3d (broken curve), 4d 
(chain curve) and5d elements ( full curve). Values 
are given for the j = 1 + 1 component only. 

Figure 5. Depth of the d3r2 PP potential for 3d 
(b.oken curve), 4d (chain curve) and 5d elements 
(full curve). Components with j = 1 - $ were 
used. 

2, accompanied by an Y,,, decrease may be attributed to the resonance character of the 
interaction of the unscreened 3d electrons with the ionic core. 

The dependence of V,,, versus Z,  for s and p components is characterised by suf- 
ficiently smaller values of the PP in comparison with that of the d component. At the 
beginning of any transition row we have V”,,, = VE,, = 1 au, and the smooth increase 
of V,,, caused by d shell filling results in values of V;,, --. 10 au and VP,,, -‘I 5 au at the 
end of the row. It is interesting that for 4d and for 5d elements, the s potentials are 
similar, and their V&,,(Z,,) and rL,,(Z,) curves appear to be indistinguishable on the 
scale of e.g. figure 5. 

Spin-orbit splitting in the PP was characterised by the value of AV, determined as the 
maximum value of VL,- l (r)  - V;(r).  A plot of AV, versus Z,  is given in figure 6. 
Previously the conclusion of maximum spin-orbit splitting for p states with a 
AV, > AVd > AV, sequence was drawn [21]. Our results show that another relation 
AV, > AV, > AV, is valid for all transition metals except for the first elements of the 3d 
and 4d series where AV, 5 AV, is appropriate. The spin-orbit splitting AVd smoothly 
increases with Z,, while the AV, versus 2, curve presented in figure 6(b)  is less smooth, 
and the AV, increase is less pronounced. Note that the AV,(Z,) curve for 4d elements 
is close to that for 5d elements, so the former is not shown in figure 6(b) .  

The pseudopotential spin-orbit splitting has also been studied [41] for a number of 
simple metals using the relativistic quantum defect theory and the Heine-Abarenkov 
model PP. These values of AV, were a few times smaller than those given in figure 6 due 
to a quite different form of PP components used in real space (V;  = const for r S 2.5 in 
[41]). Nevertheless, some trends in the AV,(Z,) dependence for simple metals resemble 
our results, e.g. the filling of the p shell leads to a decrease of AV, with a simultaneous 
smooth increase of AVp. It means that the AV, > AVd relation obtained in [21,41] for 
a variety of simple metals should be compared with AV, > AV, for transition elements. 
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Figure 6. Spin-orbit splitting in the potential AV,: (a)  d component for 3d (broken curve), 
4d (chain curve), and 5d elements (full curve); ( b )  p component for 5d (full curve) and 3d 
elements (chain curve), and the f component for 5d elements (broken curve). 

Spin-orbit splitting increases for the valence states (d for transition elements and p for 
simple ones) and falls for the outer-core states (f for transition elements and d for simple) 
while going along a row of the Periodic table. 

Now we make some comments on the technique of PP construction. First of all we 
studied the influence on V ;  of a particular choice of V,, from [23, 35,361 respectively, 
and found numerical differences in VL of the order of 1%. Then we performed pseu- 
doatomic calculations for different configurations similar to those shown in table 1. At 
this stage we constructed V(r)  for the pseudoatomic problem (1.1) by choosing one of 
the three types of Vi  mentioned above, and Vx,(pps) was taken to be of the form given 
by Ceperley and Alder [23,24]. The resulting valence energies were compared with each 
other and with all-electron data. All four sets of E, and E,, agree to within 0.1% thus 
confirming the negligible influence of the form of V,, on the resulting Vk. 

Ionic PPS are considerably more affected by the choice of r,,-values. Reduction of r,, 
by means of e.g. the choice of Kl = 2 for I = 0 , 1 , 2  leads, in the case of tungsten, to the 
emergence of the strong repulsive part of the PP at small distances. It should be noted 
that all components remain nearly unchanged in the small region of space near r = 2, 
i.e. in the region which determines a chemical bonding. The energy dependence of such 
a contracted potential is even weaker than the one illustrated by table 1. Thus one may 
choose the set of &-values according to the particular physical problem with confidence 
in transferability and accuracy of PP obtained. 

5. Conclusions 

In the present work, a formalism of ionic PP construction using a fully relativistic LDA 
treatment has been developed. PPS for transition metals of the third, fourth and fifth 
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rows were constructed, and systematic trends in the above series of elements were 
studied. Analysis of the major and minor wavefunction components indicates the neces- 
sity of a fully relativistic treatment of d electrons in heavy 5d elements. 

Atomic energy eigenvalues and excitation energies are reproduced by our potentials 
with an accuracy of order 10 meV in the range of excitation energies up to 30 eV, which 
is evidence of good potential transferability. The resulting PPS are not sensitive to the 
particular form of the exchangexorrelation potential. The short-range part of the 
potential is strongly influenced by the choice of effective ionic radii, leaving some 
flexibility for physical applications. 
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